Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch.

نویسندگان

  • Sean E Weise
  • Stephen M Schrader
  • Kyle R Kleinbeck
  • Thomas D Sharkey
چکیده

Transitory starch is formed in chloroplasts during the day and broken down at night. Transitory starch degradation could be regulated by light, circadian rhythms, or carbon balance. To test the role of these potential regulators, starch breakdown rates and metabolites were measured in bean (Phaseolus vulgaris) and Arabidopsis (Arabidopsis thaliana) plants. In continuous light, starch and maltose levels oscillated in a circadian manner. Under photorespiratory conditions, transitory starch breakdown occurred in the light faster than at night and glucose-6-P (G6P) was elevated. Nonaqueous fractionation showed that the increase in G6P occurred in the chloroplast. When Arabidopsis plants lacking the plastidic starch phosphorylase enzyme were placed under photorespiratory conditions, G6P levels remained constant, indicating that the increased chloroplastic G6P resulted from phosphorolytic starch degradation. Maltose was increased under photorespiratory conditions in both wild type and plants lacking starch phosphorylase, indicating that regulation of starch breakdown may occur at a point preceding the division of the hydrolytic and phosphorolytic pathways. When bean leaves were held in N2 to suppress photosynthesis and Suc synthesis without increasing photorespiration, starch breakdown did not occur and maltose and G6P levels remained constant. The redox status of the chloroplasts was found to be oxidized under conditions favoring starch degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of transitory starch in C(3), CAM, and C(4) metabolism and opportunities for engineering leaf starch accumulation.

Essentially all plants store starch in their leaves during the day and break it down the following night. This transitory starch accumulation acts as an overflow mechanism when the sucrose synthesis capacity is limiting, and transitory starch also acts as a carbon store to provide sugar at night. Transitory starch breakdown can occur by either of two pathways; significant progress has been made...

متن کامل

Identification, purification, and molecular cloning of a putative plastidic glucose translocator.

During photosynthesis, part of the fixed carbon is directed into the synthesis of transitory starch, which serves as an intermediate carbon storage facility in chloroplasts. This transitory starch is mobilized during the night. Increasing evidence indicates that the main route of starch breakdown proceeds by way of hydrolytic enzymes and results in glucose formation. This pathway requires a glu...

متن کامل

Daylength and circadian effects on starch degradation and maltose metabolism.

Transitory starch is stored during the day inside chloroplasts and broken down at night for export. Maltose is the primary form of carbon export from chloroplasts at night. We investigated the influence of daylength and circadian rhythms on starch degradation and maltose metabolism. Starch breakdown was faster in plants of Arabidopsis (Arabidopsis thaliana) ecotype Wassilewskija growing in long...

متن کامل

Model description

There are several levels of complexity that need to be considered in order to describe the diurnal regulation of carbon metabolism in plants. Firstly, some reactions are lightdependent and happen only or mainly in presence of light (such as carbon fixation and starch synthesis) or in absence of light (such as starch degradation). Secondly, reactions are compartmentalised between chloroplast (ca...

متن کامل

Orchestration of carbohydrate processing for crassulacean acid metabolism.

The production of phosphoenolpyruvate as a substrate for nocturnal CO2 uptake represents a significant sink for carbohydrate in CAM plants which has to be balanced with the provisioning of carbohydrate for growth and maintenance. In starch-storing CAM species, diversification in chloroplast metabolite transporters, and the deployment of both phosphorolytic and hydrolytic routes of starch degrad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 141 3  شماره 

صفحات  -

تاریخ انتشار 2006